MAVEN POWER

Gas Turbine
Control System Basics

Presented to: ASME South Texas Section
Gas Turbine Technical Chapter
Overview

- Introduction
- Basics of Turbine Control Systems
- Types & Technical Considerations
- Turbine Controls Differentiators
- Case Study on TCS Retrofit
Introduction to Maven Power

- Est. 2005, Houston-based
- Specialize in EPC support, Balance of Plant for On-site Power Generation
- Thermal Power Generation 2-20 MW range
- Engineering to Turn-key
 - Custom applications
 - Complex projects
 - Single source for integration
 - Repowering, rework
- Markets
 - Oil & Gas
 - Utility
 - Large Industrial
 - Hospitality
Offerings

- Engineering, design & integration
- Balance of Plant Procurement
- Fuel systems
- Swgr, Trafos, Distro gear
- Automation & Controls
- Startup & Commissioning
About Me

- Aircraft Controls to Stationary Power
- Turbine Controls Engineer for GE
 - From Relay Logic/Black Boxes
 - PLCs on new or refurbished packages.
- Legacy with GE, CAT, Solar, Alstom, and other OEMs.
- 20 years in EPC power generation projects.
Basics of Turbine Controls

- Inputs
- Outputs
- Controller
- Communications
- Data Analytics
Basics of Turbine Controls

- Inputs
 - Speeds
 - Temperatures
 - Pressures
 - Flows
 - Discrete Status/Control
 - Vibration Sensors
Basics of Turbine Controls

- **Inputs**
 - Speeds
 - Temperatures
 - Pressures
 - Flows
 - Discrete Status/Control
 - Vibration Sensors
 - A/D Converters
 - 16 bit (65,535 steps)
Basics of Turbine Controls

- Outputs
 - Fuel Actuator/Valve Positioners
 - Variable Geometry
 - Annunciations
 - Electrical (VFD speeds, excitation)
 - Discrete, Commands
 - D/A Converters
Basics of Turbine Controls

- Controller
 - Mechanical
 - Pneumatic
 - Hydraulic
 - Analog
 - Digital

Fig. 4.—Governor and Throttle-Valve.

R. Routledge - Image from "Discoveries & Inventions of the Nineteenth Century" by R. Routledge, 13th edition, published 1900
Basics of Turbine Controls

- Controller
 - Mechanical
 - Pneumatic
 - Hydraulic
 - Analog
 - Digital
Basics of Turbine Controls

- Controller
 - Mechanical
 - Pneumatic
 - Hydraulic
 - Analog
 - Digital
Basics of Turbine Controls

- Controller
 - Mechanical
 - Pneumatic
 - Hydraulic
 - Analog
 - Digital
Basics of Turbine Controls

- Communications
 - Peer to Peer
 - SCADA
 - LAN/WAN
 - Distributed Control
 - IIOT
 - HMI (Human Machine Interface)
 - Annunciations
Basics of Turbine Controls

- Industrial Data Analytics
 - Data Collection
 - Cloud
 - IED (Intelligent Electronic Devices)/Sensors
 - Condition Monitoring & Machine Learning
 - Performance
 - Availability/Reliability
 - Health Assessment
 - Predict Breakdowns
Types of Turbine Controls

- Legacy Relay Logic
- Black Box
- Digital Controllers
Types of Turbine Controls

- Legacy Relay Logic
 - Analog Systems
 - Obsolescence
 - Lack of OEM Support
 - Reliability
Types of Turbine Controls

- Black Box Types
 - Still Common Today
 - May be analog or digital
 - Perform higher level controls
 - Can be mixed with relays/PLCs
 - Dedicated to CGT or others
Types of Turbine Controls

- Digital Controller
 - PLCs
 - DCSs
 - Digital “Black Boxes”
Types of Turbine Controls

- Digital Controller
 - Most Common
 - High Flexibility
 - Open Source
 - Remote I/O
 - Speed/Memory
Types of Turbine Controls

- Programming Languages
 - Ladder Logic
 - Function Block
 - Sequential Flow Chart
 - Text Languages
Technical Considerations

- Today’s Turbine Control Systems – Extremely Complex
 - Turbine Controls
 - Auxiliaries (Steam Inj, Water, Oil)
 - HRSG/Boiler/STG
 - Cooling Towers, Condensers
 - Fuel Delivery, filtration, compression, treatment
 - Compressor/Pump
 - Pipe & Valve Skids
 - Safety Systems (fire & gas detection/suppression)
 - Backup/Blackstart Power
 - SCRs, Emissions Control
Technical Considerations

- But fundamentally, GTs controlled by only 2 controls....
Technical Considerations

- But fundamentally, GTs controlled by only 2 controls….
 - 1) Fuel Control
 - 2a) Excitation (Generators)
 - 2b) Pressure/Flow (Compressor/Mech Drv)
Technical Considerations

- PID Controller for Industrial Processes
 - Proportional
 - Integral
 - Derivative
 - 1911 Nicolas Minorsky - Navy Ship Steering
 - course correction based on current, past, and ROC errors
Some PID Basics

- PID Equation

\[u(t) = K_p [e(t) + \frac{1}{T_i} \int e(t) dt + T_d \frac{de}{dt}] \]
Some PID Basics

- PID Equation

\[u(t) = K_p [e(t) + \frac{1}{T_i} \int e(t) dt + T_d \frac{de}{dt}] \]

PI Controller

- NGP\(_{SP}\) = 100%
- e = 2%

Turbine System

- System Dynamics
- Friction, Ambients
- Actuator Character.
- Oper. Point/Load
- Inertia/Momentum

- NGP\(_{ACTUAL}\) = 98%
Some PID Basics

- PID Equation

\[u(t) = K_p [e(t) + \frac{1}{T_i} \int e(t) dt + T_d \frac{de}{dt}] \]
Some PID Basics

- Unit Step: Proportional Control Only, K_p
 - Rapid Rise Time
 - Steady State Error
 - Overshoot
 - Settling Time
Some PID Basics

- Unit Step: Proportional + Integral Control, Kp + Ti
 - Slower Rise Time
 - No Steady State Error
 - Low Overshoot
 - Similar Settling Time
Some PID Basics

- PID Parameter Effect on Control Response

<table>
<thead>
<tr>
<th>Control</th>
<th>Rise Time</th>
<th>SS Error</th>
<th>Overshoot</th>
<th>Settling Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional</td>
<td>Reduce</td>
<td>Reduce</td>
<td>Increase</td>
<td>Minimal Effect</td>
</tr>
<tr>
<td>Integral</td>
<td>Reduce</td>
<td>Reduce</td>
<td>Increase</td>
<td>Increase</td>
</tr>
</tbody>
</table>

- Manual or Automatic Tuning
 - Adjust manually until desired response is achieved
 - Ziegler Nichols, Relay oscillation, Commercially available software
Turbine Controls Differentiators

- Critical Systems w/ large consequential damages
- Require high reliability, no blue screens
- Control machine dynamics
 - High speed, Large inertias and rotational kinetic energy
 - Speeds of > 15,000 rpm
 - MPU, T/C signals still hardwired
- Risks
 - High pressures/temperatures
 - Combustible gases
 - High Voltage
Turbine Controls Differentiators

- Integration with other complex systems and controls
Turbine Controls Retrofit Case Study

- 6.5MW Tornado, STIG Unit, 60Hz, 4160V
- Methanol plant, South America
- Replacement of 1998 EGT Controls
- Fuel Valve and other instrumentation replacement
- Non-OEM replacement
- Significant re-engineering
Turbine Controls Retrofit Case Study
Control System Implementation Steps
- Understand the system (documentation, drawings, software)
- Is OEM support required?
- What engineering effort is required?
- Identify end devices and I/O count & type, compatibility
- Determine level of expandability and flexibility required
- Existing controls or DCS compatibility
- Capabilities of internal resources for support
- Impact on Balance of Plant
- Product support lifecycle
- Installed base, how common is each component?
Turbine Controls Retrofit Case Study

- Specialized Turbine Programmable Controller Selected
 - Lower Cost
 - No plans for expansion of GT systems
 - Specialty 3rd party expansion modules used for vibration, fire/gas systems
 - Simple BoP Requirements
 - Electrical system same
Thank you for your attention

David C. Oehl, P.E.
Managing Director

www.mavenpower.com
Tel: +1 (832) 286-1123
3707 Cypress Creek Parkway
Houston, TX 77068